

swarm

25th May 2016 presentation by
Viktor Trón, Dániel A. Nagy & Aron Fischer

Berlin Ethereum Meetup

Swarm

A (very quick) introduction to Swarm

A (very quick) introduction to Swarm

1. Get data into the swarm

A (very quick) introduction to Swarm

● Data is chopped
up into chunks.

● Chunks are
forwarded node-
to-node (sync)

● Chunks end up
with node whose
address is
closest to chunk
hash

A (very quick) introduction to Swarm

2. Get data out of the swarm

A (very quick) introduction to Swarm

● Retriever makes a
request to a closer
connected node

● Nodes pass on
requests

● Forwarding ends
when chunk is
found. Chunk is
passed back.

Incentivisation in SWARM

A brief history of:
Web Hosting and Incentivisation

A brief history of:
Web Hosting and Incentivisation

Web 1.0

A brief history of:
Web Hosting and Incentivisation

Web 1.0
● Start a web server
● Upload content

A brief history of:
Web Hosting and Incentivisation

Web 1.0
● Start a web server
● Upload content

1. Content is unpopular
- pay costs of maintaining webserver

A brief history of:
Web Hosting and Incentivisation

Web 1.0
● Start a web server
● Upload content

1. Content is unpopular
- pay costs of maintaining webserver

2. Content becomes popular

A brief history of:
Web Hosting and Incentivisation

Web 1.0
● Start a web server
● Upload content

1. Content is unpopular
- pay costs of maintaining webserver

2. Content becomes popular
- bandwidth costs skyrocket
- server crashes / goes offline

A brief history of:
Web Hosting and Incentivisation

Web 1.0
● Start a web server
● Upload content

1. Content is unpopular
- pay costs of maintaining webserver

2. Content becomes popular
- bandwidth costs skyrocket
- server crashes / goes offline

...but at least you owned your own content.

A brief history of:
Web Hosting and Incentivisation

Web 2.0

A brief history of:
Web Hosting and Incentivisation

Web 2.0
● Upload content to the ‘cloud’
- cheap/free
- scalable

A brief history of:
Web Hosting and Incentivisation

Web 2.0
● Upload content to the ‘cloud’
- cheap/free
- scalable

But…

A brief history of:
Web Hosting and Incentivisation

Web 2.0
● Upload content to the ‘cloud’
- cheap/free
- scalable

But…
● Content owned by the service providers
● All users are tracked and spied on;
providers profit off the data.

● Centralised control: surveillance and
censorship.

A brief history of:
Web Hosting and Incentivisation

Peer to Peer Networks?

A brief history of:
Web Hosting and Incentivisation

Peer to Peer Networks
eg. Bittorrent

● Content is distributed among peers
● Distribution scales automatically
● Hashing ensures data integrity
● No central point of failure / no servers

A brief history of:
Web Hosting and Incentivisation

Peer to Peer Networks
eg. Bittorrent

● Content is distributed among peers
● Distribution scales automatically
● Hashing ensures data integrity
● No central point of failure / no servers

But:
Downloads start slowly (high latency)
No incentive to provide content: “seeding”

Swarm Incentive System

Swarm Incentive System

Bandwidth Storage

Swarm Incentive System

Bandwidth

- accounting for bandwidth
used in the p2p setting

- compensating nodes
based on the bandwidth
they provide

Storage

- allow for long-term
storage of data in the
swarm

- provide proper
compensation to nodes for
storing data

Swarm Incentive System

Bandwidth

 Bandwidth accounting is per-peer

Swarm Incentive System

Bandwidth

 Bandwidth accounting is per-peer
Number of chunks supplied

Number of chunks received

SWAP – Swarm Accounting Protocol

SWAP – Swarm Accounting Protocol

● Keeps track of number of chunks
provided/received per peer

● Can trade chunk-for-chunk or chunk-for-
payment

● Payments are made using the swarm
chequebook contract on the blockchain

(cheques are cumulative: you only ever have to
cash the last one, thus saving transaction costs)

SWAP – Swarm Accounting Protocol

Big picture:
● If you download a lot of content, you pay your

peers for providing it.
● If you host popular content, you will earn fees

from your peers for making the content
available.

SWAP – Swarm Accounting Protocol

Big picture:
● If you download a lot of content, you pay your

peers for providing it.
● If you host popular content, you will earn fees

from your peers for making the content
available.

● Swarm is auto-scaling.
-interplay of routing protocol and per-chunk payment
between peers means that popular content will be widely
distributed thereby increasing available bandwidth while
decreasing latency

Swarm Incentive System

Storage

Swarm Incentive System

Storage
The Problem:

I want to deploy my content only once:
“upload and disappear”.

I want to make sure the content remains available
years into the future even if it is not popular content.

Swarm Incentive System

Storage
The Problem:

I want to deploy my content only once:
“upload and disappear”.

I want to make sure the content remains available
years into the future even if it is not popular content.

Solution:
Pay certain nodes to keep your data.

Swarm Incentive System

Storage
The Problem:

I want to deploy my content only once:
“upload and disappear”.

I want to make sure the content remains available
years into the future even if it is not popular content.

Solution:
Pay certain nodes to keep your data.

-Nodes that sell such promises-to-store must have a
deposit locked on the blockchain.
-Nodes that loose content, loose their deposit.

Swear and Swindle

SWEAR – Swarm Ensured Archival

● Nodes register with the SWEAR contract and
pay a deposit.

SWEAR – Secure Ways of Ensuring Archival

● Nodes register with the SWEAR contract and
pay a deposit.

● Registered nodes can sell receipts for chunks
received.

SWEAR – Swarm Enforcement and Registration

● Nodes register with the SWEAR contract and
pay a deposit.

● Registered nodes can sell receipts for chunks
received.

● Receipts are promises that the data remains
available in the swarm.

SWEAR

● Nodes register with the SWEAR contract and
pay a deposit.

● Registered nodes can sell receipts for chunks
received.

● Receipts are promises that the data remains
available in the swarm.

● “Upload and Disappear” made possible by the
system of ‘guardians’

Storing content in the swarm:

What if the data cannot be found?

Example:
Chunk is not actually ‘lost’ -
It is still in the swarm,
but lookup fails because
chunk never reached
the closest node.

SWINDLE

SWINDLE – Secured with Insurance Deposit
 Litigation and Escrow

SWINDLE

● Issue ‘challenges’ to the guardian to show proof-
of-custody of the chunk shown in the receipt.

SWINDLE

● Issue ‘challenges’ to the guardian to show proof-
of-custody of the chunk shown in the receipt.

● Guardian can defend themselves by showing
proof-of-custody or guardian will forward a
challenge to the next node.

SWINDLE

● Issue ‘challenges’ to the guardian to show proof-
of-custody of the chunk shown in the receipt.

● Guardian can defend themselves by showing
proof-of-custody or guardian will forward a
challenge to the next node.

● Chain of receipts ends up with either
1) A node storing the chunk (custodian)

SWINDLE

● Issue ‘challenges’ to the guardian to show proof-
of-custody of the chunk shown in the receipt.

● Guardian can defend themselves by showing
proof-of-custody or guardian will forward a
challenge to the next node.

● Chain of receipts ends up with either
1) A node storing the chunk (custodian)
2) A node that should have the chunk but lost it.

➔ Retriever challenges
guardian

➔ Guardian challenges the
node that it bought a
receipt from.

➔ Nodes forward
challenges until the
custodian is found.

Results of Litigation

Results of Litigation

1)The Custodian is found; the missing link is
identified; the swarm is repaired

Results of Litigation

1)The Custodian is found; the missing link is
identified; the swarm is repaired

2)The Chunk is indeed lost and the offending
node is punished (loss of deposit)

Dealing with Data Loss

Preparing your data with
Erasure Codes

Preparing your data with
Erasure Codes

Idea: When preparing your file for the swarm –
i.e. when generating the swarm chunk merkle
tree – generate extra ‘redundancy chunks’ so
that all data can be recovered even if individual
chunks are lost.

Preparing your data with
Erasure Codes

Idea: When preparing your file for the swarm –
i.e. when generating the swarm chunk merkle
tree – generate extra ‘redundancy chunks’ so
that all data can be recovered even if individual
chunks are lost.

Benefits:
● Owner can set their own redundancy parameters
● Swarm can repair itself following data loss

Ordinary Swarm Chunk Merkle Tree

Adding Parity Chunks via Erasure Coding

Potential Benefits:

● All chunks in the tree are equally important
for retrieval.

● Any node can repair swarm if data loss is
discovered.

● Requesting all chunks (data + parity) can
greatly reduce latency. This could lead to
more responsive dapps.

● But Erasure coding is not enough,
especially for large data sets you have to
be able to monitor and repair.

● Swarm includes an audit system able to
identify missing chunks.

● But Erasure coding is not enough,
especially for large data sets you have to
be able to monitor and repair.

● Swarm includes an audit system able to
identify missing chunks.

● But Erasure coding is not enough,
especially for large data sets you have to
be able to monitor and repair.

● Swarm includes an audit system able to
identify missing chunks.

● But Erasure coding is not enough,
especially for large data sets you have to
be able to monitor and repair.

● Swarm includes an audit system able to
identify missing chunks.

● The same auditing system is used as a
condition to periodically release payments
for long-term storage agreements.

Idea: “each new payment requires a proof
(audit) that the data is really still available”

SWAP • SWEAR • SWINDLE

The Web3 Experience

swarm: Basic architecture

Well-separated layers connected by simple APIs:

Swarm-hosted Đapps

Virtual, content-addressed webserver

Random-access arbitrary-length files

Swarm-hosted Đapps

Chunk (fixed-size block) storage

swarm: Web3 user experience

● Familiar: hypertext with multimedia in a browser
– Interactive, responsive, intuitive

● Personalization and identity management
– Selectable personae, identities

– Part of browser, not application

● Legal and financial interactions
– Binding agreements

– Payment with provable receipts

– Rate-limits, confirmations with passwords, etc.

Swarm: Đapp mechanics

● Current root hash registered on block chain
● Most static and dynamic data in Swarm
● Global state changes on block chain
● Local state changes stored locally

– Optionally backed up in swarm and/or block chain

● Business logic gets executed locally
– But verified globally by means of Ethereum

Swarm: Đapp example #1
distributed photo album

● Web-app & data hosted in swarm
– Root hash of collections published on block chain

– Long-term incentives make sure it is not gc'd

– Short-term incentives drive publishing costs down

– High performance irrespective of popularity

● No concurrent editing
– Each collection is only edited by one contributor

– All editing is done by the editor's computer

● No comments or ratings

Swarm: Đapp example #2
distributed social network

● Personalization: list of followed contributors
– E.g. friends contributing comments, likes, etc.

– Their number is limited

● Content is rendered by traversing this list
– For each post, friend list is scanned for comments

to this post

– Single root hash on the block chain for each
participant, changes with editing, publishing,
commenting

● Requests for following through block chain

Swarm: Đapp example #3
distributed map/encyclopedia

● No “official truth”, forking is cheap
– Alternative perspectives face no prohibitive costs

– Continued “rebasing” keeps all versions up-to-date

– No edit wars, no blackouts

● Groups or individuals can have own versions
– Registered on the block chain by root hash

– Requires some editor work, but not much

● Few versions of individual records
– Opinions on any single topic tend to cluster around

a few alternatives

What’s next? (Roadmap)

SWARM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

